If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(12x^2-18x-20)/((4x+3)^2)=0
Domain of the equation: ((4x+3)^2)!=0We multiply all the terms by the denominator
x∈R
(12x^2-18x-20)=0
We get rid of parentheses
12x^2-18x-20=0
a = 12; b = -18; c = -20;
Δ = b2-4ac
Δ = -182-4·12·(-20)
Δ = 1284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1284}=\sqrt{4*321}=\sqrt{4}*\sqrt{321}=2\sqrt{321}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{321}}{2*12}=\frac{18-2\sqrt{321}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{321}}{2*12}=\frac{18+2\sqrt{321}}{24} $
| 2/3z-6=15 | | 3x=462 | | -6/7v=30 | | 6+x/2=2xx | | 5x/4-8=12 | | 6+x/2=2*x | | 80=19d | | (c^2+9c+14)/(c+7)=0 | | 1-4n=2n+43 | | 7.2-5=6.2x | | 3/4x-2(4+2x)=-1/2x+1/2 | | 10^x=0.0001 | | 3n-7=5n+36 | | h=-16^2+1250 | | 3x-(-7)=35 | | -3(y-8)=5y-48 | | 3/2(10-4d)=-27 | | 2/3(x-6)=-18 | | (4w-7)/6+(4w+1)/2=26 | | 8^2x=3 | | 45-s=27 | | 7j-(-15j)-(-4j)-(-8j)=-18 | | 24=-8x+5(x+3) | | 10=-2(n+6) | | 7.75x=8.85 | | (7x+1)/4=9 | | -12=4.7k+11 | | -7x-11=10 | | -5.1=12.4+w/7 | | 2x+4+2=18 | | 5x+(12x-1.7)=37.4 | | 3/2(10-4x)=-27 |